

A-Level Maths Y11-Y12 Transition

How to use this document:

- Use the contents page and any blue text to navigate the document.
- Read through the written examples.
- Complete the sets of practice questions.
- Use the corresponding video for each practice set to support and to self-assess.
- Complete additional practice, using the solutions at the end of the document to self-assess.

Contents

Practice Assessment	3
Extension activities: Read/Watch/Listen	5
Indices	6
Surds	9
Algebraic Methods	13
Quadratic Equations	16
Simultaneous Equations	20
Inequalities	23
Trigonometry	26
Solutions	32
Practice Assessment	34
Indices	35
Surds	36
Quadratic Equations	38
Simultaneous Equations	39
Inequalities	40
Trigonometry	/11

Practice Assessment

1. Simplify the following expressions:

a)
$$2x^2 \times x^3$$

b)
$$\frac{x^6}{x^2}$$

c)
$$\frac{54x^5y^4}{18x^2y^2}$$

d)
$$9x^{-\frac{1}{3}} \times (4x^4)^{\frac{3}{2}}$$

2. Solve:
$$3x^4 = 48$$

3. Find the value of *x*:
$$5^{x-1} = 125$$

4.

a) Simplify
$$\sqrt{360}$$

b) Expand and simplify:
$$(3 + 5\sqrt{3})(2 - \sqrt{3})$$

c) Simplify:
$$\frac{3+5\sqrt{3}}{2+\sqrt{3}}$$

5. Expand and simplify

$$(3x + 2)^3$$

6. Fully factorise:

a)
$$x^2 - 49$$

b)
$$x^2 + 8x + 15$$

c)
$$6x^2 + 5x - 6$$

7. Solve the following quadratic equations:

a)
$$x^2 + 3x = 40$$

b)
$$x^2 - 4x = -3$$

8. Solve these simultaneous equations:

a)

$$x + y = 11$$

$$3x - y = 1$$

b)

$$x - 2y = 5$$

$$4x + y = 3$$

c)

$$x^2 + y = 7$$

$$x + y^2 = 11$$

9. Solve the inequalities:

a)
$$6x - 4 \le 14$$

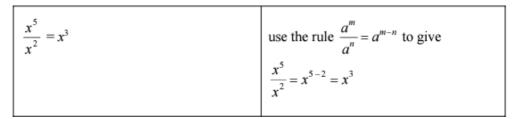
b)
$$5x + 3 \ge 2x + 12$$

c)
$$x^2 - 10x + 21 > 0$$

10. Functions:

Let
$$f(x) = 4x - 2$$
 and $g(x) = x^2 + 1$

- a) f(3)
- b) fg(x)
- c) Find the value when $f^{-1}(x) = 5$


Extension activities: Read/Watch/Listen

Read	Watch	Listen
A range of articles	A range of videos	Numberphile
https://plus.maths.org/cont	https://plus.maths.org/cont	Podcast
ent/articles	ent/tags/video	
including "Maths in a	including	Breaking
minute: Invariants"	"Complex numbers"	Math Podcast
	"Women of mathematics"	
"Humble Pi" by Matt Parker		
– Fun look at real-life maths		
mistakes.		

Indices

Worked Examples

Simplify $\frac{x^5}{x^2}$

Simplify $6x^6 \times 3x^4$

$6x^6 \times 3x^4 = 18x^2$	$6 \times 3 = 18$ and then use the rule $a^m \times a^n = a^{m+n}$ to give
	$x^6 \times x^4 = x^{6+4} = x^{10}$

Simplify $(x^4)^2 \times 3x^5$

$$(x^4)^2 \times 3x^5 = 3x^{13}$$

$$3 \times 1 = 3 \text{ and then}$$
use the rule $(a^m)^n = a^{mn}$ following by to give $a^m \times a^n = a^{m+n}$

$$(x^4)^2 \times x^5 = x^{4 \times 2} \times x^5$$

$$= x^8 \times x^5$$

$$= x^{8+5}$$

$$= x^{13}$$

Evaluate $9^{\frac{1}{2}}$

$$9^{\frac{1}{2}} = \sqrt{9}$$
= 3

Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$

Evaluate $27^{\frac{2}{3}}$

$$27^{\frac{2}{3}} = (\sqrt[3]{27})^2$$
= 3^2
= 9

1 Use the rule $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$
2 Use $\sqrt[3]{27} = 3$

Evaluate 4⁻²

$$4^{-2} = \frac{1}{4^2}$$

$$= \frac{1}{16}$$
1 Use the rule $a^{-m} = \frac{1}{a^m}$
2 Use $4^2 = 16$

Practice Questions

Set 1

Simplify these expressions:

$$\mathbf{a.}\ x^2\times x^5$$

a.
$$x^2 \times x^5$$
 b. $2r^2 \times 3r^3$ **c.** $\frac{b^7}{b^4}$ **d.** $6x^5 \div 3x^3$ **e.** $(a^3)^2 \times 2a^2$ **f.** $(3x^2)^3 \div x^4$

$$\mathbf{c.}\,\frac{b^7}{b^4}$$

d.
$$6x^5 \div 3x^3$$

e.
$$(a^3)^2 \times 2a^2$$

f.
$$(3x^2)^3 \div x^4$$

Set 2

Simplify:

a.
$$\frac{x^3}{x^{-3}}$$

b.
$$x^{\frac{1}{2}} \times x^{\frac{3}{2}}$$

c.
$$(x^3)^{\frac{2}{3}}$$

a.
$$\frac{x^3}{x^3}$$
 b. $x^{\frac{1}{2}} \times x^{\frac{3}{2}}$ **c.** $(x^3)^{\frac{2}{3}}$ **d.** $2x^{1.5} \div 4x^{-0.25}$ **e.** $\sqrt[3]{125x^6}$ **f.** $\frac{2x^2 - x}{x^5}$

f.
$$\frac{2x^2 - x}{x^5}$$

Set 3

Evaluate:

c.
$$49^{\frac{3}{2}}$$

a.
$$9^{\frac{1}{2}}$$
 b. $64^{\frac{1}{3}}$ **c.** $49^{\frac{3}{2}}$ **d.** $25^{-\frac{3}{2}}$

Video Solutions

<u>Set 1</u>

Set 2

Set 3

Additional Practice

Set 1

- 1. (a) Simplify $a^4 \times a^5$

- 2. (a) Simplify $x^7 \times x^3$

(b) Simplify $\frac{45e^6f^8}{5ef^2}$

- (b) Simplify $(m^4)^3$
- (c) Simplify $\frac{36af^8}{12a^5f^2}$
- (c) Write down the value of $9^{\frac{1}{2}}$

Set 2

1 Simplify.

$$\mathbf{a} \qquad \frac{3x^2 \times x^3}{2x^2}$$

$$\mathbf{b} \qquad \frac{10x^5}{2x^2 \times x}$$

$$\mathbf{c} = \frac{3x \times 2x^3}{2x^3}$$

$$\mathbf{d} \qquad \frac{7x^3y^2}{14x^5y}$$

$$\mathbf{e} \qquad \frac{y^2}{y^{\frac{1}{2}} \times y}$$

$$\mathbf{f} \qquad \frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$$

$$\mathbf{g} = \frac{\left(2x^2\right)^3}{4x^0}$$

$$\mathbf{h} \qquad \frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^3}$$

Set 3

1 Evaluate.

a
$$49^{\frac{1}{2}}$$

2 Evaluate.

a
$$25^{\frac{3}{2}}$$

3 Evaluate.

4 Evaluate.

$$a 4^{-\frac{1}{2}}$$

b
$$27^{-\frac{2}{3}}$$

<u>Surds</u>

Worked Examples

Simplify $\sqrt{50}$

$$\sqrt{50} = \sqrt{25 \times 2}$$

$$=5 \times \sqrt{2}$$

$$=5\sqrt{2}$$

- Choose two numbers that are factors of 50. One of the factors must be a square number
- 2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- 3 Use $\sqrt{25} = 5$

Simplify $\sqrt{147} - 2\sqrt{12}$

$$\sqrt{147} - 2\sqrt{12}$$
$$= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$$

$$= \sqrt{49} \times \sqrt{3} - 2\sqrt{4} \times \sqrt{3}$$
$$= 7 \times \sqrt{3} - 2 \times 2 \times \sqrt{3}$$
$$= 7\sqrt{3} - 4\sqrt{3}$$
$$= 3\sqrt{3}$$

- 1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
- 2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- 3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
- 4 Collect like terms

Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$

$$(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$$

$$= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4}$$

$$= 7 - 2$$

$$= 5$$

- 1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$
- 2 Collect like terms: $-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$

Rationalise $\frac{1}{\sqrt{3}}$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
$$= \frac{1 \times \sqrt{3}}{\sqrt{9}}$$
$$= \frac{\sqrt{3}}{\sqrt{9}}$$

1 Multiply the numerator and denominator by $\sqrt{3}$

2 Use
$$\sqrt{9} = 3$$

Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

$$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$$

$$=\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$$

$$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$$

$$=\frac{6-3\sqrt{5}}{-1}$$

$$= 3\sqrt{5} - 6$$

1 Multiply the numerator and denominator by $2-\sqrt{5}$

2 Expand the brackets

3 Simplify the fraction

4 Divide the numerator by -1 Remember to change the sign of all terms when dividing by -1

Practice Questions

Set 1

Simplify:

b.
$$\frac{\sqrt{20}}{2}$$

a.
$$\sqrt{12}$$
 b. $\frac{\sqrt{20}}{2}$ **c.** $5\sqrt{6} - 2\sqrt{24} + \sqrt{294}$

Set 2

Expand and simplify if possible:

a.
$$\sqrt{2} (5 - \sqrt{3})$$

a.
$$\sqrt{2} (5 - \sqrt{3})$$
 b. $(2 - \sqrt{3}) (5 + \sqrt{3})$

Set 3

Rationalise the denominator of:

a.
$$\frac{1}{\sqrt{3}}$$

b.
$$\frac{1}{3+\sqrt{2}}$$

a.
$$\frac{1}{\sqrt{3}}$$
 b. $\frac{1}{3+\sqrt{2}}$ **c.** $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$ **d.** $\frac{1}{(1-\sqrt{3})^2}$

d.
$$\frac{1}{(1-\sqrt{3})^2}$$

Video Solutions

<u>Set 1</u>

Set 2

Set 3

Additional Practice

Set 1

Simplify. 1

a
$$\sqrt{45}$$

b
$$\sqrt{125}$$

d
$$\sqrt{175}$$

Simplify.

a
$$\sqrt{72} + \sqrt{162}$$

b
$$\sqrt{45} - 2\sqrt{5}$$

c
$$\sqrt{50} - \sqrt{8}$$

d
$$\sqrt{75} - \sqrt{48}$$

e
$$2\sqrt{28} + \sqrt{28}$$

f
$$2\sqrt{12} - \sqrt{12} + \sqrt{27}$$

Set 2

Expand and simplify.

a
$$(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$$
 b $(3 + \sqrt{3})(5 - \sqrt{12})$

b
$$(3+\sqrt{3})(5-\sqrt{12})$$

c
$$(4-\sqrt{5})(\sqrt{45}+2)$$

d
$$(5+\sqrt{2})(6-\sqrt{8})$$

Expand and simplify $(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$

3 Work out the value of
$$\left(\sqrt{2} + \sqrt{8}\right)^2$$

4 Expand
$$(1 + \sqrt{2})(3 - \sqrt{2})$$

Give your answer in the form $a + b\sqrt{2}$ where a and b are integers.

1 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{5}}$$

b
$$\frac{1}{\sqrt{11}}$$

$$c = \frac{2}{\sqrt{7}}$$

d
$$\frac{2}{\sqrt{8}}$$

$$e \frac{2}{\sqrt{2}}$$

$$f = \frac{5}{\sqrt{5}}$$

2 Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$

$$\mathbf{b} = \frac{2}{4 + \sqrt{3}}$$

$$c = \frac{6}{5 - \sqrt{2}}$$

3 Rationalise and simplify, if possible.

$$\mathbf{a} \qquad \frac{1}{\sqrt{9} - \sqrt{8}}$$

$$\mathbf{b} = \frac{1}{\sqrt{x} - \sqrt{y}}$$

Algebraic Methods

Worked Examples

b = 3, ac = -10

Factorise $x^2 + 3x - 10$

So
$$x^2 + 3x - 10 = x^2 + 5x - 2x - 10$$

= $x(x+5) - 2(x+5)$
= $(x+5)(x-2)$

- 1 Work out the two factors of ac = -10 which add to give b = 3 (5 and -2)
- 2 Rewrite the *b* term (3*x*) using these two factors
- 3 Factorise the first two terms and the last two terms
- 4 (x + 5) is a factor of both terms

Factorise $6x^2 - 11x - 10$

$$b = -11, ac = -60$$
So
$$6x^{2} - 11x - 10 = 6x^{2} - 15x + 4x - 10$$

$$= 3x(2x - 5) + 2(2x - 5)$$

$$= (2x - 5)(3x + 2)$$

- 1 Work out the two factors of ac = -60 which add to give b = -11 (-15 and 4)
- 2 Rewrite the *b* term (-11*x*) using these two factors
- 3 Factorise the first two terms and the last two terms
- 4 (2x-5) is a factor of both terms

Factorise $4x^2 - 25y^2$

$4x^2 - 25y^2 = (2x + 5y)(2x - 5y)$	This is the difference of two squares as the two terms can be written as $(2x)^2$ and $(5y)^2$
-------------------------------------	--

Simplify
$$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$$

$$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$$

For the numerator:

$$b = -4$$
, $ac = -21$

So

$$x^2 - 4x - 21 = x^2 - 7x + 3x - 21$$

 $= x(x - 7) + 3(x - 7)$
 $= (x - 7)(x + 3)$

For the denominator:

$$b = 9$$
, $ac = 18$

So

$$2x^2 + 9x + 9 = 2x^2 + 6x + 3x + 9$$

 $= 2x(x+3) + 3(x+3)$
 $= (x+3)(2x+3)$

$$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9} = \frac{(x - 7)(x + 3)}{(x + 3)(2x + 3)}$$
$$= \frac{x - 7}{2x + 3}$$

- Factorise the numerator and the denominator
- 2 Work out the two factors of ac = -21 which add to give b = -4 (-7 and 3)
- 3 Rewrite the b term (-4x) using these two factors
- 4 Factorise the first two terms and the last two terms
- 5 (x-7) is a factor of both terms
- 6 Work out the two factors of ac = 18 which add to give b = 9 (6 and 3)
- 7 Rewrite the b term (9x) using these two factors
- 8 Factorise the first two terms and the last two terms
- 9 (x+3) is a factor of both terms
- 10 (x + 3) is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

Practice Questions

Set 1

Simplify these fractions:

a.
$$\frac{7x^4 - 2x^3 + 6x}{x}$$

b.
$$\frac{(x+7)(2x-1)}{(2x-1)}$$

c.
$$\frac{x^2 + 7x + 12}{(x+3)}$$

d.
$$\frac{x^2 + 6x + 5}{x^2 + 3x - 10}$$

e.
$$\frac{2x^2 + 11x + 12}{(x+3)(x+4)}$$

Video Solutions

Set 1

Additional Practice

Set 1

Simplify the algebraic fractions.

$$\mathbf{a} \qquad \frac{2x^2 + 4x}{x^2 - x}$$

b
$$\frac{x^2 + 3x}{x^2 + 2x - 3}$$

$$\mathbf{c} \qquad \frac{x^2 - 2x - 8}{x^2 - 4x}$$

$$\mathbf{d} \qquad \frac{x^2 - 5x}{x^2 - 25}$$

$$e \frac{x^2 - x - 12}{x^2 - 4x}$$

$$\mathbf{f} = \frac{2x^2 + 14x}{2x^2 + 4x - 70}$$

2 Simplify

$$\mathbf{a} \qquad \frac{9x^2 - 16}{3x^2 + 17x - 28}$$

$$\mathbf{b} = \frac{2x^2 - 7x - 15}{3x^2 - 17x + 10}$$

Quadratic Equations

Worked Examples

Solve $5x^2 = 15x$

$$5x^2 = 15x$$
$$5x^2 - 15x = 0$$

$$5x(x-3)=0$$

So
$$5x = 0$$
 or $(x - 3) = 0$

Therefore
$$x = 0$$
 or $x = 3$

 Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero.
 Do not divide both sides by x as this would lose the solution x = 0.

- 2 Factorise the quadratic equation. 5x is a common factor.
- 3 When two values multiply to make zero, at least one of the values must be zero.
- 4 Solve these two equations.

Solve $x^2 + 7x + 12 = 0$

$$x^2 + 7x + 12 = 0$$

$$b = 7$$
, $ac = 12$

$$x^2 + 4x + 3x + 12 = 0$$

$$x(x+4) + 3(x+4) = 0$$

$$(x+4)(x+3) = 0$$

So $(x+4) = 0$ or $(x+3) = 0$

Therefore
$$x = -4$$
 or $x = -3$

Factorise the quadratic equation.
 Work out the two factors of ac = 12 which add to give you b = 7.
 (4 and 3)

- 2 Rewrite the b term (7x) using these two factors.
- 3 Factorise the first two terms and the last two terms.
- 4 (x+4) is a factor of both terms.
- 5 When two values multiply to make zero, at least one of the values must be zero.
- 6 Solve these two equations.

Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

$$a = 3, b = -7, c = -2$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$$

$$x = \frac{7 - \sqrt{73}}{6}$$
So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$

 Identify a, b and c, making sure you get the signs right and write down the formula.

Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2a, not just part of it.

- 2 Substitute a = 3, b = -7, c = -2 into the formula.
- 3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2.
- 4 Write down both the solutions.

Complete the square for the expression $x^2 + 6x$

$$x^{2} + 6x$$

$$= \left(x + \frac{6}{2}\right)^{2} - \left(\frac{6}{2}\right)^{2}$$

$$= (x + 3)^{2} - 9$$

1 Write $x^2 + bx + c$ in the form $\left(x+\frac{b}{2}\right)^2-\left(\frac{b}{2}\right)^2+c$

Simplify.

Complete the square for the expression $2x^2 - 7x$

$$2x^{2} - 7x$$

$$= 2\left(x^{2} - \frac{7}{2}x\right)$$

$$= 2\left[\left(x - \frac{7}{4}\right)^{2} - \left(\frac{7}{4}\right)^{2}\right]$$

1 Before completing the square write $ax^2 + bx + c$ in the form $a\left(x^2 + \frac{b}{a}x\right) + c$

2 Now complete the square by writing $x^2 - \frac{7}{2}x$ in the form $\left(x+\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2$

 $=2\left(x-\frac{7}{4}\right)^2-\frac{49}{9}$

3 Expand and Simplify

Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$$x^{2} + 6x + 4 = 0$$

$$(x+3)^{2} - 9 + 4 = 0$$

$$(x+3)^{2} - 5 = 0$$

$$(x+3)^{2} = 5$$

$$x+3 = \pm\sqrt{5}$$

$$x = \pm\sqrt{5} - 3$$
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$

- 1 Write $x^2 + bx + c = 0$ in the form $\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$
- Simplify.
- 3 Rearrange the equation to work out x. First, add 5 to both sides.
- 4 Square root both sides. Remember that the square root of a value gives two answers.
- 5 Subtract 3 from both sides to solve the equation.
- 6 Write down both solutions.

Practice Questions

Set 1

Solve the following equations:

a.
$$x^2 - 2x - 15 = 0$$

b.
$$x^2 = 9x$$

a.
$$x^2 - 2x - 15 = 0$$
 b. $x^2 = 9x$ **c.** $6x^2 + 13x - 5 = 0$

d.
$$x^2 - 5x + 18 = 2 + 3x$$

Set 2

Solve $3x^2 - 7x - 1 = 0$ by using the formula.

Set 3

Complete the square for the expressions:

a.
$$x^2 + 8x$$

b.
$$x^2 - 3x$$

a.
$$x^2 + 8x$$
 b. $x^2 - 3x$ **c.** $2x^2 - 12x$

Set 4

Solve the equation $x^2 + 8x + 10 = 0$ by completing the square.

Give your answers in surd form.

Video Solutions

Set 1

Set 2

Set 3

Set 4

Additional Practice

Set 1

1 Solve

a
$$6x^2 + 4x = 0$$

$$\mathbf{c} \qquad x^2 + 7x + 10 = 0$$

$$e x^2 - 3x - 4 = 0$$

$$\mathbf{g} \qquad 2x^2 - 7x - 4 = 0$$

b
$$28x^2 - 21x = 0$$

d
$$x^2 - 5x + 6 = 0$$

$$\mathbf{f} \qquad x^2 + 3x - 10 = 0$$

$$h = 3x^2 - 13x - 10 = 0$$

Set 2

1 Solve, giving your solutions in surd form.

a
$$3x^2 + 6x + 2 = 0$$

b
$$2x^2 - 4x - 7 = 0$$

2 Solve the equation $x^2 - 7x + 2 = 0$

Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b and c are integers.

3 Solve $10x^2 + 3x + 3 = 5$ Give your solution in surd form.

Set 3

1 Complete the square for the following expressions:

a
$$x^2 + 8x$$

b
$$x^2 - 10x$$

$$\mathbf{c} \qquad x^2 - x$$

d
$$3x^2 - 15x$$

Set 4

1 Solve by completing the square.

a
$$x^2 - 4x - 3 = 0$$

b
$$x^2 - 10x + 4 = 0$$

$$x^2 + 8x - 5 = 0$$

d
$$x^2 - 2x - 6 = 0$$

<u>Simultaneous Equations</u>

Worked Examples

Solve the simultaneous equations 3x + y = 5 and x + y = 1

$$3x + y = 5$$

$$- x + y = 1$$

$$2x = 4$$

So
$$x = 2$$

Using
$$x + y = 1$$

 $2 + y = 1$
So $y = -1$

equation 1:
$$3 \times 2 + (-1) = 5$$
 YES
equation 2: $2 + (-1) = 1$ YES

 Subtract the second equation from the first equation to eliminate the y term.

- 2 To find the value of y, substitute x = 2 into one of the original equations.
- 3 Substitute the values of x and y into both equations to check your answers.

Solve x + 2y = 13 and 5x - 2y = 5 simultaneously.

$$x + 2y = 13
+ 5x - 2y = 5
6x = 18$$

So
$$x = 3$$

Using
$$x + 2y = 13$$

 $3 + 2y = 13$

So
$$y = 5$$

Check:

equation 1:
$$3 + 2 \times 5 = 13$$
 YES
equation 2: $5 \times 3 - 2 \times 5 = 5$ YES

- Add the two equations together to eliminate the y term.
- 2 To find the value of y, substitute x = 3 into one of the original equations.
- 3 Substitute the values of x and y into both equations to check your answers.

$$2x-1=x^2-4$$

$$x^2 - 2x - 3 = 0$$

$$(x+1)(x-3)=0$$

$$x = -1$$
 and $x = 3$

$$x = -1, y = -3$$

$$x = 3, y = 5$$

Check:

Equation 1:
$$-3 = 2(-1)-1$$
 YES

$$5 = 2(3) - 1$$
 YES

Equation 2: $-1 = (-1)^2 - 4$ YES

$$5 = (3)^2 - 4$$
 YES

- 1 Substitute 2x 1 for y in the linear equation
- 2 Rearrange to obtain a quadratic equation whose RHS is zero
- 3 Factorize
- 4 Find two values for x
- 5 Substitute each of these values in turn into the other equation to find two values for y
- 6 Substitute both values for x and y into both equations to check your answers.

Solve simultaneously, y = x + 1 and $y = 1 + \frac{4}{x}$

$$x+1=1+\frac{4}{x}$$

$$x^2 + x = x + 4$$

$$x^2 - 4 = 0$$

$$(x-2)(x+2) = 0$$

$$x = 2$$
 and $x = -2$

$$x = 2, y = 3$$

$$x = -2, y = -1$$

Check:

Equation 1:
$$3 = 2 + 1$$
 YES

$$-1 = -2 + 1$$

YES

Equation 2:
$$3=1+(4\div 2)$$
 YES

$$-1=1+(4\div(-2))$$

YES

- 1 Substitute x+1 for y in the linear equation
- 2 Multiply both sides by x
- 3 Rearrange to obtain a quadratic equation whose RHS is zero
- 3 Factorize
- 4 Find two values for x
- 5 Substitute each of these values in turn into the other equation to find two values for y
- 6 Substitute both values for x and y into both equations to check your answers.

Practice Questions

Set 1

Solve the simultaneous equations:

a.
$$2x + 3y = 8$$

 $3x - y = 23$

b.
$$4x - 5y = 4$$

 $6x + 2y = 25$

Set 2

Solve the simultaneous equations:

$$2x + 2y = 3$$
$$x^2 + 3xy = 10$$

<u>Video Solutions</u>

<u>Set 1</u>

Set 2

<u>Additional Practice</u>

Set 1

$$1 4x + y = 8$$
$$x + y = 5$$

$$3x + y = 7 3x + 2y = 5$$

3
$$4x + y = 3$$

 $3x - y = 11$

4
$$3x + 4y = 7$$

 $x - 4y = 5$

$$5 2x + y = 11$$
$$x - 3y = 9$$

6
$$2x + 3y = 11$$

 $3x + 2y = 4$

Set 2

Solve these simultaneous equations.

1
$$xy = 9$$
 and $y = x$

2
$$x^2 + y^2 = 50$$
 and $y = x$

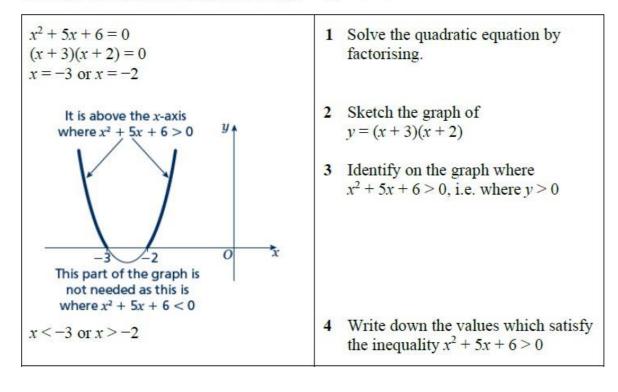
3
$$xy - 3 = 16$$
 and $x - 19y = 0$

Inequalities

Worked Examples

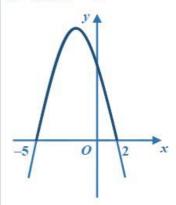
Solve 2x - 5 < 7

2x - 5 < 7 $2x < 12$ $x < 6$	1 Add 5 to both sides.2 Divide both sides by 2.
------------------------------	--


Solve $2-5x \ge -8$

$ 2-5x \ge -8 $ $ -5x \ge -10 $ $ x \le 2 $	 Subtract 2 from both sides. Divide both sides by -5. Remember to reverse the inequality when dividing by a negative number.
---	---

Solve 4(x-2) > 3(9-x)


$$4(x-2) > 3(9-x)$$
 1 Expand the brackets.
 $4x-8 > 27-3x$ 2 Add $3x$ to both sides.
 $7x-8 > 27$ 3 Add 8 to both sides.
 $7x > 35$ 4 Divide both sides by 7.

Find the set of values of x which satisfy $x^2 + 5x + 6 > 0$

Find the set of values of x which satisfy $-x^2 - 3x + 10 \ge 0$

$$-x^{2} - 3x + 10 = 0$$
$$(-x + 2)(x + 5) = 0$$
$$x = 2 \text{ or } x = -5$$

$$-5 \leqslant x \leqslant 2$$

- 1 Solve the quadratic equation by factorising.
- 2 Sketch the graph of y = (-x + 2)(x + 5) = 0
- 3 Identify on the graph where $-x^2 - 3x + 10 \ge 0$, i.e. where $y \ge 0$
- 3 Write down the values which satisfy the inequality $-x^2 - 3x + 10 \ge 0$

Practice Questions

Set 1

Find the set of values of x for which:

a.
$$5x + 9 > x + 20$$

b.
$$12 - 3x < 27$$

a.
$$5x + 9 \ge x + 20$$
 b. $12 - 3x < 27$ **c.** $3(x - 5) > 5 - 2(x - 8)$

Set 2

Find the set of values of x for which:

$$3 - 5x - 2x^2 < 0$$

Video Solutions

<u>Set 1</u>

Set 2

Additional Practice

Set 1

1 Solve

a
$$2-4x \ge 18$$

b
$$3 \le 7x + 10 < 45$$
 c $6 - 2x \ge 4$

c
$$6-2x \ge 4$$

d
$$4x + 17 < 2 - x$$
 e $4 - 5x < -3x$ **f** $-4x \ge 24$

e
$$4 - 5x < -3x$$

f
$$-4x \ge 24$$

2 Solve these inequalities

a
$$3t+1 < t+6$$

b
$$2(3n-1) \ge n+5$$

3 Solve

a
$$3(2-x) > 2(4-x) + 4$$

a
$$3(2-x) > 2(4-x) + 4$$
 b $5(4-x) > 3(5-x) + 2$

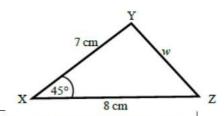
Set 2

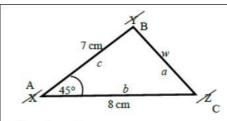
Find the set of values of x for which $(x + 7)(x - 4) \le 0$ 1

Find the set of values of x for which $x^2 - 4x - 12 \ge 0$ 2

Find the set of values of x for which $2x^2 - 7x + 3 < 0$ 3

Find the set of values of x for which $4x^2 + 4x - 3 > 0$ 4


Find the set of values of x for which $12 + x - x^2 \ge 0$ 5

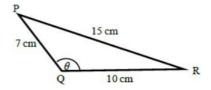

Trigonometry

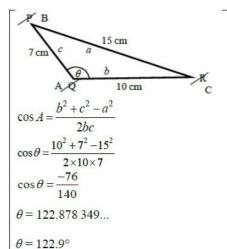
Worked Examples

Work out the length of side w.

Give your answer correct to 3 significant figures.

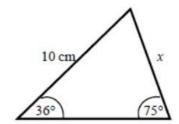
$$a^2 = b^2 + c^2 - 2bc \cos A$$

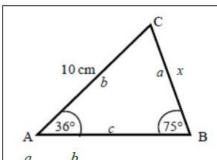

$$w^2 = 8^2 + 7^2 - 2 \times 8 \times 7 \times \cos 45^\circ$$


$$w^2 = 33.804\,040\,51...$$
$$w = \sqrt{33.804\,040\,51}$$
$$w = 5.81\,\text{cm}$$

w 5.01 cm

- Always start by labelling the angles and sides.
- 2 Write the cosine rule to find the side.
- 3 Substitute the values a, b and A into the formula.
- 4 Use a calculator to find w^2 and then w.
- 5 Round your final answer to 3 significant figures and write the units in your answer.


Work out the size of angle θ . Give your answer correct to 1 decimal place.

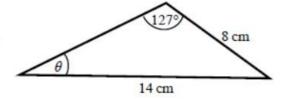


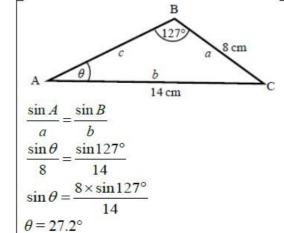
- 1 Always start by labelling the angles and sides.
- 2 Write the cosine rule to find the angle.
- 3 Substitute the values *a*, *b* and *c* into the formula.
- 4 Use cos⁻¹ to find the angle.
- 5 Use your calculator to work out $\cos^{-1}(-76 \div 140)$.
- 6 Round your answer to 1 decimal place and write the units in your answer.

Work out the length of side *x*. Give your answer correct to 3 significant figures.

$$\frac{x}{\sin A} = \frac{\sin B}{\sin B}$$

$$\frac{x}{\sin 36^{\circ}} = \frac{10}{\sin 75^{\circ}}$$


$$x = \frac{10 \times \sin 36^{\circ}}{\sin 75^{\circ}}$$


$$x = 6.09 \text{ cm}$$

1 Always start by labelling the angles and sides.

- 2 Write the sine rule to find the side.
- 3 Substitute the values a, b, A and B into the formula.
- 4 Rearrange to make x the subject.
- 5 Round your answer to 3 significant figures and write the units in your answer.

Work out the size of angle θ . Give your answer correct to 1 decimal place.

- 1 Always start by labelling the angles and sides.
- 2 Write the sine rule to find the angle.
- 3 Substitute the values *a*, *b*, *A* and *B* into the formula.
- 4 Rearrange to make $\sin \theta$ the subject.
- 5 Use sin⁻¹ to find the angle. Round your answer to 1 decimal place and write the units in your answer.

Practice Questions

Set 1

Calculate the length of the side AB of the triangle ABC in which AC = 6.5 cm, BC = 8.7 cm and $\angle ACB = 100^{\circ}$.

Set 2

Find the size of the smallest angle in a triangle whose sides have lengths 3 cm, 5 cm and 6 cm.

Set 3

```
In \triangle ABC, AB = 8 cm, \angle BAC = 30^{\circ} and \angle BCA = 40^{\circ}. Find BC.
```

Set 4

```
In \triangle ABC, AB = 3.8 cm, BC = 5.2 cm and \angle BAC = 35^{\circ}. Find \angle ABC.
```

Set 5

- **a.** Sketch the graph of $y = \cos \theta$ in the interval $-360^{\circ} \le \theta \le 360^{\circ}$.
- **b.** i. Sketch the graph of $y = \sin x$ in the interval $-180^{\circ} \le x \le 270^{\circ}$
 - ii. $\sin (-30^\circ) = -0.5$. Use your graph to determine two further values of x for which $\sin x = -0.5$.

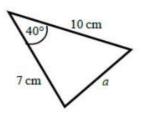
Video Solutions

Set 1

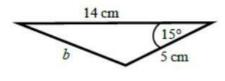
Set 2

Set 3

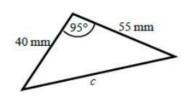
Set 4

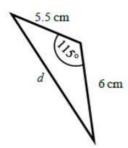

<u>Set 5</u>

Additional Practice

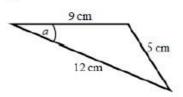

Set 1

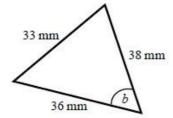
Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.


a

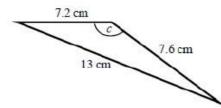

b

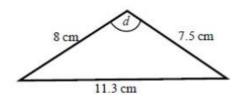
C


d

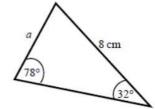

Set 2

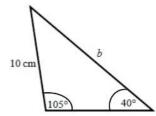
1 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.


a

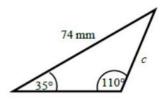

b

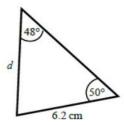
C


d

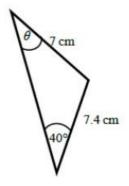

Set 3

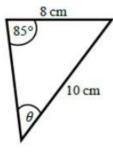
Find the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.


a

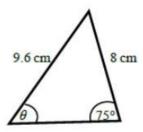

b

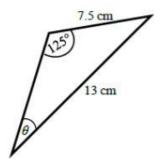
c


d

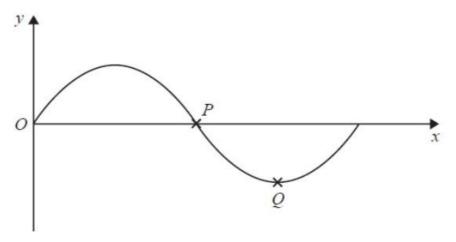

Set 4

1 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.


a


b

C



d

Set 5

1 The diagram shows part of a sketch of the curve $y = \sin x^{\circ}$

- (a) Write down the coordinates of
 - (i) the point P

	(
	(,)
N NO CONTRACT	

(ii) the point Q

1		ð
(,	 J

(b) Sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$ Show the coordinates of any points of intersection with the coordinate axes.

Functions

What is a Function? In maths, a function is something that takes an input and produces an output. Functions can be given as function machines or as mathematical expressions. Sometimes, functions are displayed in the form $f: x \to 3x - 5$, which is the same as f(x) = 3x - 5.

Worked Examples

Type 1: Evaluating Functions

Example: A function is given by f(x) = 3x + 1. Find f(10).

To solve this, replace x with 10 and calculate the result.

$$Wf(10) = 3 \times 10 + 1 = 31.$$

Type 2: Composite Functions

Example: Let f(x) = 2x - 3 and g(x) = x + 1. Find fg(x).

To find fg(x), replace x in f(x) with g(x). fg(x) = f(g(x)) = 2(x+1) - 3.

Expand the brackets and simplify: 2(x+1) - 3 = 2x + 2 - 3

$$= 2x - 1.$$

Example 1: Composite Functions (Additional)Let f(x) = x - 3 and $g(x) = x^2$. a) Find f(g(10)): First find g(10), then apply f(x) to the answer.

$$g(10) = 10^2 = 100.$$

$$So, fg(10) = f(100) = 100 - 3 = 97.$$

b) Find gf(-4): First find f(-4), then apply g(x) to the answer.

$$f(-4) = -4 - 3 = -7.$$
 So, $gf(-4) = g(-7) = (-7)^2 = 49.$

c) Find an expression for fg(x):

Input
$$g(x)$$
 into $f(x)$. $fg(x) = f(g(x)) = g(x) - 3 = x^2 - 3$.

Type 3: Inverse Functions

An inverse function is a function acting in reverse.

The inverse function of f(x) is given by $f^{-1}(x)$, and it tells us how to go from an output of f(x) back to its input.

Example: Given that $f(x) = \frac{x+8}{3}$, find $f^{-1}(x)$.

Step 1: Write the equation in the form x = f(y).

Replace all x's with y's and set the equation equal to x. f(x)

$$=\frac{x+8}{3}becomes x = \frac{y+8}{3}.$$

Step 2: Rearrange the equation to make y the subject. x = (y + 8)/3 3x

$$= y + 8 3x - 8 = y$$
. Step 3: Replace y with $f^{-1}(x)$. $y = 3x - 8 f^{-1}(x) = 3x - 8$.

Example 2: Inverse Functions (Additional)

Given that
$$f(x) = 3x - 9$$
, find $f^{-1}(x)$.

Step 1: Write the equation in the form x = f(y).

$$f(x) = 3x - 9 \text{ becomes } x = 3y - 9.$$

$$Step 2: Rearrange \text{ to make } y \text{ the subject. } x = 3y - 9$$

$$x + 9 = 3y$$

$$\frac{x + 9}{3} = y.$$

$$Step 3: Replace y \text{ with } f^{-1}(x).$$

$$\frac{x + 9}{3} = y$$

$$f^{-1}(x) = \frac{x + 9}{3}.$$

Question 1: Let $f(x) = \frac{10}{3x-5}$.

- a) Find f(10)
- . *b*) Find f(2).
- c) Find f(-1).

Question 2: Let $f(x) = \frac{15}{x}$ and g(x) = 2x - 5.

- a) Find fg(4)
- . *b*) Find gf(-30).
- c) Find gf(x).

Question 3: Find the inverse function of $f(x) = \frac{5}{x-4}$.

Question 4: Find the inverse function of $g(x) = \frac{4}{x} + 3$.

Solutions

Practice Assessment

- 1. Simplify:
 - a) $2x^{5}$
 - b) x^4
 - c) $3x^3y^2$
 - d) $72x^{\frac{17}{3}}$
- 2. $x = \pm 2$
- 3. x = 4
- 4.
- a) $6\sqrt{10}$
- b) $-9 + 7\sqrt{3}$
- c) $-9 + 7\sqrt{3}$
- 5. $27x^3 + 54x^2 + 36x + 8$
- 6.
- a) (x + 7)(x 7)
- b) (x + 5)(x + 3)
- c) (2x + 3)(3x 2)
- 7.
 - a) x = -8, x = 5
 - b) x = 1, x = 3
- 8.
- a) x = 3, y = 8
- b) $x = \frac{11}{9}$, $y = -\frac{17}{9}$
- c) x = 3, y = 1
 - x = -1, y = 5
- 9.
- a) $x \leq 3$
- b) $x \ge 3$
- c) x < 3, x > 7
- 10.
 - a) 10
 - b) $4x^2 + 2$
 - c) 18

<u>Indices</u>

Additional Practice

Set 1

- **1.** (a) a^9
- 2.
- (a) x^{10}
- (b) $9e^{5}f^{6}$
- (b) m¹²

(c) 3

(c) $3a^{-4}f^6$

Set 2

b $5x^2$

c 3*x*

f c^{-3}

 $2x^6$

h x

Set 3

- 1
- a 7

b 4

2 a 125 32

<u>Surds</u>

Additional Practice

Set 1

1	a	3√5
	4	JVJ

c $4\sqrt{3}$

2 a
$$15\sqrt{2}$$

c 3√2

e $6\sqrt{7}$

d $5\sqrt{7}$

b √5

d $\sqrt{3}$

f 5√3

Set 2

c $10\sqrt{5}-7$

b 9−√3

d $26-4\sqrt{2}$

$$\mathbf{2}$$
 $x-y$

3 18

4 1 + 2 $\sqrt{2}$

Set 3

1 a
$$\frac{\sqrt{5}}{5}$$

 $c \frac{2\sqrt{7}}{7}$

e √2

2 a
$$\frac{3+\sqrt{5}}{4}$$

3 a $3+2\sqrt{2}$

b
$$\frac{\sqrt{11}}{11}$$

d $\frac{\sqrt{2}}{2}$

f √5

b
$$\frac{2(4-\sqrt{3})}{13}$$

 $c = \frac{6(5+\sqrt{2})}{23}$

 $\mathbf{b} \qquad \frac{\sqrt{x} + \sqrt{y}}{x - y}$

Algebraic Methods

Additional Practice

Set 1

1 **a**
$$\frac{2(x+2)}{x-1}$$

$$c = \frac{x+2}{x}$$

$$e \frac{x+3}{x}$$

2 a
$$\frac{3x+4}{x+7}$$

$$\mathbf{b} \qquad \frac{x}{x-1}$$

$$\mathbf{d} \qquad \frac{x}{x+5}$$

$$\mathbf{f} = \frac{x}{x-5}$$

b
$$\frac{2x+3}{3x-2}$$

Quadratic Equations

Additional Practice

Set 1

1 **a** x = 0 or $x = -\frac{2}{3}$

c x = -5 or x = -2

 $g = x = -\frac{1}{2} \text{ or } x = 4$

b $x = 0 \text{ or } x = \frac{3}{4}$

d x = 2 or x = 3

f x = -5 or x = 2

h $x = -\frac{2}{3}$ or x = 5

Set 2

1 **a** $x = -1 + \frac{\sqrt{3}}{2}$ or $x = -1 - \frac{\sqrt{3}}{2}$ **b** $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$

2 $x = \frac{7 + \sqrt{41}}{2}$ or $x = \frac{7 - \sqrt{41}}{2}$

3 $x = \frac{-3 + \sqrt{89}}{20}$ or $x = \frac{-3 - \sqrt{89}}{20}$

Set 3

1

a $(x+4)^2-16$

b $(x-5)^2-25$ **c** $\left(x-\frac{1}{2}\right)^2-\frac{1}{4}$

d $3\left(x-\frac{5}{2}\right)^2-\frac{75}{4}$

 $e - 2(x-3)^2 + 18$

Set 4

1 **a** $x = 2 + \sqrt{7}$ or $x = 2 - \sqrt{7}$ **b** $x = 5 + \sqrt{21}$ or $x = 5 - \sqrt{21}$

c $x = -4 + \sqrt{21}$ or $x = -4 - \sqrt{21}$ d $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$

Simultaneous Equations

Additional Practice

Set 1

1
$$x = 1, y = 4$$

1
$$x = 1, y = 4$$
 4 $x = 3, y = -\frac{1}{2}$

2
$$x = 3, y = -2$$
 5 $x = 6, y = -1$

5
$$x = 6, v = -1$$

3
$$x = 2, y = -5$$
 6 $x = -2, y = 5$

6
$$x = -2, y = 5$$

Set 2

1
$$x = -3$$
, $y = -3$ and $x = 3$, $y = 3$

and
$$x=3, y=3$$

2
$$x = -5$$
, $y = -5$ and $x = 5$, $y = 5$

and
$$x=5, y=5$$

3
$$x = -19, y = -1$$
 and $x = 19, y = 1$

$$x = 19, v = 1$$

<u>Inequalities</u>

Additional Practice

Set 1

1 a
$$x \le -4$$

d x < -3

b
$$-1 \le x \le 5$$

e x > 2

c
$$x \leq 1$$

 $\begin{array}{ll}
\mathbf{c} & x \le 1 \\
\mathbf{f} & x \le -6
\end{array}$

2 a
$$t < \frac{5}{2}$$

b $n \ge \frac{7}{5}$

a
$$x < -6$$

b
$$x < \frac{3}{2}$$

Set 2

1
$$-7 \leqslant x \leqslant 4$$

2
$$x \le -2 \text{ or } x \ge 6$$

$$\frac{1}{2} < x < 3$$

4
$$x < -\frac{3}{2} \text{ or } x > \frac{1}{2}$$

5
$$-3 ≤ x ≤ 4$$

Trigonometry

Additional Practice

Set 1

1 a 6.46 cm **b** 9.26 cm **c** 70.8 mm **d** 9.70 cm

Set 2

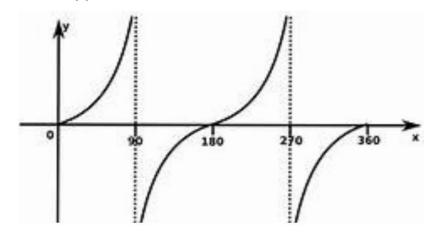
1 a 22.2° **b** 52.9°

c 122.9° d 93.6°

Set 3

1 a 4.33 cm **b** 15.0 cm **c** 45.2 mm **d** 6.39 cm

Set 4


1 a 42.8° b 52.8° c 53.6° d 28.2°

Set 5

1 (a)(i) (180, 0)

(270, -1)(ii)

(b)

Functions

Question 1: a) 2/5n = 0.4

b) 10.

$$c) -\frac{5}{4} = -1.25.$$

Question 2: a) 5.

b) – 6.

c)
$$\frac{30}{x}$$
 - 5.

Question 3: $f^{-1}(x) = \frac{5}{x} + 4$.

Question 4: $g^{-1}(x) = \frac{4}{x-3}$.