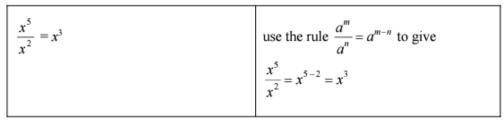


A-Level Maths Y11-Y12 Transition

How to use this document:

- Use the contents page and any blue text to navigate the document.
- Read through the written examples.
- Complete the sets of practice questions.
- Use the corresponding video for each practice set to support and to self-assess.
- Complete additional practice, using the solutions at the end of the document to self-assess.


Contents

Indices	3
Surds	6
Straight Lines	10
Algebraic Methods	13
Quadratic Equations	16
Simultaneous Equations	20
Inequalities	23
Trigonometry	26
Solutions	32
Indices	32
Surds	33
Straight Lines	34
Algebraic Fractions	35
Quadratic Equations	36
Simultaneous Equations	37
Inequalities	38
Trigonometry	39

Indices

Worked Examples

Simplify $\frac{x^5}{x^2}$

Simplify $6x^6 \times 3x^4$

$6 \times 3 = 18$ and then use the rule $a^m \times a^n = a^{m+n}$ to give
$x^6 \times x^4 = x^{6+4} = x^{10}$

Simplify $(x^4)^2 \times 3x^5$

$$(x^4)^2 \times 3x^5 = 3x^{13}$$

$$3 \times 1 = 3 \text{ and then}$$
use the rule $(a^m)^n = a^{mn}$ following by to give $a^m \times a^n = a^{m+n}$

$$(x^4)^2 \times x^5 = x^{4 \times 2} \times x^5$$

$$= x^8 \times x^5$$

$$= x^{8+5}$$

$$= x^{13}$$

Evaluate $9^{\frac{1}{2}}$

$$9^{\frac{1}{2}} = \sqrt{9}$$
= 3
Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$

Evaluate $27^{\frac{2}{3}}$

$$27^{\frac{2}{3}} = (\sqrt[3]{27})^2$$
= 3^2
= 9

1 Use the rule $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$
2 Use $\sqrt[3]{27} = 3$

Evaluate 4⁻²

$$4^{-2} = \frac{1}{4^{2}}$$

$$= \frac{1}{16}$$
1 Use the rule $a^{-m} = \frac{1}{a^{m}}$
2 Use $4^{2} = 16$

Page **3** of **39**

Practice Questions

Set 1

Simplify these expressions:

$$\mathbf{a.}\ x^2\times x^5$$

a.
$$x^2 \times x^5$$
 b. $2r^2 \times 3r^3$ **c.** $\frac{b^7}{b^4}$ **d.** $6x^5 \div 3x^3$ **e.** $(a^3)^2 \times 2a^2$ **f.** $(3x^2)^3 \div x^4$

c.
$$\frac{b^7}{b^4}$$

d.
$$6x^5 \div 3x^3$$

e.
$$(a^3)^2 \times 2a^2$$

f.
$$(3x^2)^3 \div x^4$$

Set 2

Simplify:

a.
$$\frac{x^3}{x^{-3}}$$

b.
$$x^{\frac{1}{2}} \times x^{\frac{3}{2}}$$

c.
$$(x^3)^{\frac{2}{3}}$$

a.
$$\frac{x^3}{x^3}$$
 b. $x^{\frac{1}{2}} \times x^{\frac{3}{2}}$ **c.** $(x^3)^{\frac{2}{3}}$ **d.** $2x^{1.5} \div 4x^{-0.25}$ **e.** $\sqrt[3]{125x^6}$ **f.** $\frac{2x^2 - x}{x^5}$

f.
$$\frac{2x^2 - x}{x^5}$$

Set 3

Evaluate:

a.
$$9^{\frac{1}{2}}$$

c.
$$49^{\frac{3}{2}}$$

a.
$$9^{\frac{1}{2}}$$
 b. $64^{\frac{1}{3}}$ **c.** $49^{\frac{3}{2}}$ **d.** $25^{-\frac{3}{2}}$

Video Solutions

Set 1

Set 2

Set 3

Additional Practice

Set 1

- 1. (a) Simplify $a^4 \times a^5$

- 2. (a) Simplify $x^7 \times x^3$

(b) Simplify $\frac{45e^6f^8}{5ef^2}$

(b) Simplify $(m^4)^3$

- (c) Write down the value of $9^{\frac{1}{2}}$
- (c) Simplify $\frac{36af^8}{12a^5f^2}$

Set 2

1 Simplify.

$$\mathbf{a} \qquad \frac{3x^2 \times x^3}{2x^2}$$

$$\mathbf{b} \qquad \frac{10x^5}{2x^2 \times x}$$

$$\mathbf{c} = \frac{3x \times 2x^3}{2x^3}$$

$$\mathbf{d} \qquad \frac{7x^3y^2}{14x^5y}$$

$$\mathbf{e} \qquad \frac{y^2}{y^{\frac{1}{2}} \times y}$$

$$\mathbf{f} \qquad \frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$$

$$\mathbf{g} = \frac{\left(2x^2\right)^3}{4x^0}$$

$$\mathbf{h} \qquad \frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^3}$$

Set 3

Evaluate.

a
$$49^{\frac{1}{2}}$$

2 Evaluate.

a
$$25^{\frac{3}{2}}$$

3 Evaluate.

4 Evaluate.

$$a 4^{-\frac{1}{2}}$$

b
$$27^{-\frac{2}{3}}$$

Solutions

Surds

Worked Examples

Simplify $\sqrt{50}$

$$\sqrt{50} = \sqrt{25 \times 2}$$

$$=\sqrt{25}\times\sqrt{2}$$

$$=5\times\sqrt{2}$$

$$=5\sqrt{2}$$

- Choose two numbers that are factors of 50. One of the factors must be a square number
- 2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- 3 Use $\sqrt{25} = 5$

Simplify $\sqrt{147} - 2\sqrt{12}$

$$\sqrt{147} - 2\sqrt{12}$$

$$=\sqrt{49\times3}-2\sqrt{4\times3}$$

$$= \sqrt{49} \times \sqrt{3} - 2\sqrt{4} \times \sqrt{3}$$

$$=7 \times \sqrt{3} - 2 \times 2 \times \sqrt{3}$$
$$=7 \times \sqrt{3} - 4 \sqrt{3}$$
$$=7\sqrt{3} - 4\sqrt{3}$$

$$=7\sqrt{3}-4\sqrt{3}$$

$$=3\sqrt{3}$$

- 1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
- 2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- 3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
- 4 Collect like terms

Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$

$$(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$$
$$= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4}$$

$$=7-2$$

= 5

- Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$
- 2 Collect like terms:

$$-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$$
$$= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$$

Rationalise $\frac{1}{\sqrt{3}}$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
$$= \frac{1 \times \sqrt{3}}{\sqrt{9}}$$

$$=\frac{\sqrt{3}}{3}$$

1 Multiply the numerator and denominator by $\sqrt{3}$

2 Use
$$\sqrt{9} = 3$$

Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

$$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$$

$$=\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$$

$$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$$

$$=\frac{6-3\sqrt{5}}{-1}$$

$$= 3\sqrt{5} - 6$$

1 Multiply the numerator and denominator by $2-\sqrt{5}$

Expand the brackets

3 Simplify the fraction

4 Divide the numerator by -1 Remember to change the sign of all terms when dividing by -1

Practice Questions

Set 1

Simplify:

b.
$$\frac{\sqrt{20}}{2}$$

a.
$$\sqrt{12}$$
 b. $\frac{\sqrt{20}}{2}$ **c.** $5\sqrt{6} - 2\sqrt{24} + \sqrt{294}$

Set 2

Expand and simplify if possible:

a.
$$\sqrt{2}$$
 (5 – $\sqrt{3}$)

a.
$$\sqrt{2} (5 - \sqrt{3})$$
 b. $(2 - \sqrt{3}) (5 + \sqrt{3})$

Set 3

Rationalise the denominator of:

a.
$$\frac{1}{\sqrt{3}}$$

b.
$$\frac{1}{3+\sqrt{2}}$$

a.
$$\frac{1}{\sqrt{3}}$$
 b. $\frac{1}{3+\sqrt{2}}$ **c.** $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$ **d.** $\frac{1}{(1-\sqrt{3})^2}$

d.
$$\frac{1}{(1-\sqrt{3})^2}$$

Video Solutions

Set 1

Set 2

Set 3

Additional Practice

Set 1

1 Simplify.

a	•	$\sqrt{45}$
	,	v

d
$$\sqrt{175}$$

Simplify.

a
$$\sqrt{72} + \sqrt{162}$$

b
$$\sqrt{45} - 2\sqrt{5}$$

c
$$\sqrt{50} - \sqrt{8}$$

d
$$\sqrt{75} - \sqrt{48}$$

e
$$2\sqrt{28} + \sqrt{28}$$

f
$$2\sqrt{12} - \sqrt{12} + \sqrt{27}$$

Set 2

Expand and simplify.

a
$$(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$$
 b $(3 + \sqrt{3})(5 - \sqrt{12})$

b
$$(3+\sqrt{3})(5-\sqrt{12})$$

c
$$(4-\sqrt{5})(\sqrt{45}+2)$$

d
$$(5+\sqrt{2})(6-\sqrt{8})$$

Expand and simplify $(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$ 2

3 Work out the value of
$$\left(\sqrt{2} + \sqrt{8}\right)^2$$

4 Expand
$$(1 + \sqrt{2})(3 - \sqrt{2})$$

Give your answer in the form $a + b\sqrt{2}$ where a and b are integers.

1 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{5}}$$

$$\frac{1}{\sqrt{11}}$$

$$c = \frac{2}{\sqrt{7}}$$

d
$$\frac{2}{\sqrt{8}}$$

$$e \frac{2}{\sqrt{2}}$$

$$f = \frac{5}{\sqrt{5}}$$

2 Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$

$$\mathbf{b} = \frac{2}{4 + \sqrt{3}}$$

$$c = \frac{6}{5-\sqrt{2}}$$

3 Rationalise and simplify, if possible.

$$\mathbf{a} = \frac{1}{\sqrt{9} - \sqrt{8}}$$

$$\mathbf{b} = \frac{1}{\sqrt{x} - \sqrt{y}}$$

Solutions

Straight Lines

Worked Examples

Work out the gradient of the line joining (2, 4) and (8, 7).

$$x_1 = 2$$
, $x_2 = 8$, $y_1 = 4$ and $y_2 = 7$
 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$

Substitute the coordinates into the equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out the gradient of the line.

Find the equation of the line which passes through the point (5, 13) and has gradient 3.

$$m = 3$$
$$y = 3x + c$$

 $m=\frac{1}{2}$

 $13 = 3 \times 5 + c$

$$13 = 15 + c$$

 $c = -2$

y = 3x - 2

Substitute the gradient given in the question into the equation of a straight line y = mx + c.

2 Substitute the coordinates x = 5 and y = 13 into the equation.

3 Simplify and solve the equation.

4 Substitute c = -2 into the equation y = 3x + c

Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7).

$$x_1 = 2$$
, $x_2 = 8$, $y_1 = 4$ and $y_2 = 7$
 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$

$$y = \frac{1}{2}x + c$$

$$4 = \frac{1}{2} \times 2 + c$$

$$c = 3$$

$$y = \frac{1}{2}x + 3$$

1 Substitute the coordinates into the equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out

the gradient of the line.

Substitute the gradient into the

equation of a straight line y = mx + c.

3 Substitute the coordinates of either point into the equation.

4 Simplify and solve the equation.

5 Substitute c = 3 into the equation

$$y = \frac{1}{2}x + c$$

Find the equation of the line parallel to y = 2x + 4 which passes through the point (4, 9).

$$y = 2x + 4$$

$$m = 2$$

$$y = 2x + c$$

$$9 = 2 \times 4 + c$$

$$9 = 8 + c$$

$$c = 1$$

$$y = 2x + 1$$

- As the lines are parallel they have the same gradient.
- 2 Substitute m = 2 into the equation of a straight line y = mx + c.
- 3 Substitute the coordinates into the equation y = 2x + c
- 4 Simplify and solve the equation.
- Substitute c = 1 into the equation y = 2x + c

Practice Questions

Set 1

Work out the gradient of the line joining (-2, 7) and (4, 5)

Set 2

Find the equation of the line with gradient 5 that passes through the point (3, 2).

Set 3

Find the equation of the line that passes through the points (5, 7) and (3, -1).

Set 4

A line is parallel to the line 6x + 3y - 2 = 0 and it passes through the point (0, 3). Work out the equation of the line.

Video Solutions

Set 1

Set 2

Set 3

Set 4

Additional Practice

Set 1

- Work out the gradient of the line joining each p[air of coordinates.
 - (4,5), (10,17)

(0,6), (-4,8)

(-1, -7), (5, 23)

d (3, 10), (4, 7)

Set 2 1 Find, in the form ax + by + c = 0 where a, b and c are integers, an equation for each of the lines with the following gradients and y-intercepts.

a gradient $-\frac{1}{2}$, y-intercept -7 **b** gradient $\underline{2}$, y-intercept 0

c gradient $\frac{2}{3}$, y-intercept 4 **d** gradient $-1.\underline{2}$, y-intercept -2

- Write an equation for the line which passes though the point (2, 5) and has gradient 4.
- Write an equation for the line which passes through the point (6,3) and has gradient $-\frac{2}{3}$

Set 3

Write an equation for the line passing through each of the following pairs of points.

Set 4

Find the equation of the line parallel to each of the given lines and which passes through each of the given points.

a
$$y = 3x + 1$$
 (3, 2)

b
$$v = 3 - 2x$$
 (1.3)

a
$$y = 3x + 1$$
 (3, 2)
b $y = 3 - 2x$ (1, 3)
c $2x + 4y + 3 = 0$ (6, -3)
d $2y - 3x + 2 = 0$ (8, 20)

d
$$2y-3x+2=0$$
 (8.20)

Solutions

Algebraic Methods

Worked Examples

b = 3, ac = -10

Factorise $x^2 + 3x - 10$

So
$$x^2 + 3x - 10 = x^2 + 5x - 2x - 10$$

= $x(x + 5) - 2(x + 5)$
= $(x + 5)(x - 2)$

- 1 Work out the two factors of ac = -10 which add to give b = 3 (5 and -2)
- 2 Rewrite the *b* term (3*x*) using these two factors
- 3 Factorise the first two terms and the last two terms
- 4 (x + 5) is a factor of both terms

Factorise $6x^2 - 11x - 10$

$$b = -11, ac = -60$$
So
$$6x^{2} - 11x - 10 = 6x^{2} - 15x + 4x - 10$$

$$= 3x(2x - 5) + 2(2x - 5)$$

$$= (2x - 5)(3x + 2)$$
1 Work
$$ac = (-15)$$
2 Rewrithese
$$3 \text{ Factor last to}$$

$$4 (2x - 5)$$

- 1 Work out the two factors of ac = -60 which add to give b = -11 (-15 and 4)
- 2 Rewrite the b term (-11x) using these two factors
- 3 Factorise the first two terms and the last two terms
- 4 (2x-5) is a factor of both terms

Factorise $4x^2 - 25y^2$

$4x^2 - 25y^2 = (2x + 5y)(2x - 5y)$	This is the difference of two squares as the two terms can be written as $(2x)^2$ and $(5y)^2$
-------------------------------------	--

Simplify
$$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$$

$$\frac{x^2-4x-21}{2x^2+9x+9}$$

For the numerator:

$$b = -4$$
, $ac = -21$

So

$$x^2 - 4x - 21 = x^2 - 7x + 3x - 21$$

 $= x(x - 7) + 3(x - 7)$
 $= (x - 7)(x + 3)$

For the denominator:

$$b = 9$$
, $ac = 18$

So

$$2x^2 + 9x + 9 = 2x^2 + 6x + 3x + 9$$

 $= 2x(x+3) + 3(x+3)$
 $= (x+3)(2x+3)$
So
 $\frac{x^2 - 4x - 21}{2x^2 + 9x + 9} = \frac{(x-7)(x+3)}{(x+3)(2x+3)}$

 $=\frac{x-7}{2x+3}$

- Factorise the numerator and the denominator
- Work out the two factors of ac = -21 which add to give b = -4 (-7 and 3)
- 3 Rewrite the b term (-4x) using these two factors
- 4 Factorise the first two terms and the last two terms
- 5 (x-7) is a factor of both terms
- 6 Work out the two factors of ac = 18 which add to give b = 9 (6 and 3)
- 7 Rewrite the b term (9x) using these two factors
- 8 Factorise the first two terms and the last two terms
- 9 (x+3) is a factor of both terms
- 10 (x + 3) is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

Practice Questions

Set 1

Simplify these fractions:

a.
$$\frac{7x^4 - 2x^3 + 6x}{x}$$

b.
$$\frac{(x+7)(2x-1)}{(2x-1)}$$

c.
$$\frac{x^2 + 7x + 12}{(x+3)}$$

d.
$$\frac{x^2 + 6x + 5}{x^2 + 3x - 10}$$

e.
$$\frac{2x^2 + 11x + 12}{(x+3)(x+4)}$$

Video Solutions

<u>Set 1</u>

Additional Practice

Set 1

1 Simplify the algebraic fractions.

$$\mathbf{a} \qquad \frac{2x^2 + 4x}{x^2 - x}$$

$$\mathbf{b} \qquad \frac{x^2 + 3x}{x^2 + 2x - 3}$$

$$\mathbf{c} \qquad \frac{x^2 - 2x - 8}{x^2 - 4x}$$

d
$$\frac{x^2-5x}{x^2-25}$$

$$e \qquad \frac{x^2 - x - 12}{x^2 - 4x}$$

$$\mathbf{f} = \frac{2x^2 + 14x}{2x^2 + 4x - 70}$$

2 Simplify

$$\mathbf{a} = \frac{9x^2 - 16}{3x^2 + 17x - 28}$$

b
$$\frac{2x^2-7x-15}{3x^2-17x+10}$$

Solutions

Quadratic Equations

Worked Examples

Solve $5x^2 = 15x$

$$5x^2 = 15x$$
$$5x^2 - 15x = 0$$

$$5x(x-3)=0$$

So
$$5x = 0$$
 or $(x - 3) = 0$

Therefore x = 0 or x = 3

- Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero.
 Do not divide both sides by x as this would lose the solution x = 0.
- 2 Factorise the quadratic equation. 5x is a common factor.
- 3 When two values multiply to make zero, at least one of the values must be zero.
- 4 Solve these two equations.

Solve $x^2 + 7x + 12 = 0$

$$x^2 + 7x + 12 = 0$$

$$b = 7$$
, $ac = 12$

$$x^2 + 4x + 3x + 12 = 0$$

$$x(x+4) + 3(x+4) = 0$$

$$(x + 4)(x + 3) = 0$$

So $(x + 4) = 0$ or $(x + 3) = 0$

Therefore
$$x = -4$$
 or $x = -3$

- 1 Factorise the quadratic equation. Work out the two factors of ac = 12 which add to give you b = 7. (4 and 3)
- 2 Rewrite the *b* term (7*x*) using these two factors.
- 3 Factorise the first two terms and the last two terms.
- 4 (x+4) is a factor of both terms.
- 5 When two values multiply to make zero, at least one of the values must be zero.
- 6 Solve these two equations.

Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

$$a = 3, b = -7, c = -2$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$$

$$x = \frac{7 \pm \sqrt{73}}{6}$$
So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$

- Identify a, b and c, making sure you get the signs right and write down the formula.
 - Remember that $-b \pm \sqrt{b^2 4ac}$ is all over 2a, not just part of it.
- 2 Substitute a = 3, b = -7, c = -2 into the formula.
- 3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2.
- 4 Write down both the solutions.

Complete the square for the expression $x^2 + 6x$

$$x^{2} + 6x$$

$$= \left(x + \frac{6}{2}\right)^{2} - \left(\frac{6}{2}\right)^{2}$$

$$= (x + 3)^{2} - 9$$

1 Write $x^2 + bx + c$ in the form $\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$

2 Simplify.

Complete the square for the expression $2x^2 - 7x$

$$2x^{2} - 7x$$

$$= 2\left(x^{2} - \frac{7}{2}x\right)$$

$$= 2\left[\left(x - \frac{7}{4}\right)^{2} - \left(\frac{7}{4}\right)^{2}\right]$$

1 Before completing the square write
$$ax^2 + bx + c$$
 in the form $a\left(x^2 + \frac{b}{a}x\right) + c$

 $=2\left[\left(x-\frac{7}{4}\right)-\left(\frac{7}{4}\right)\right]$

2 Now complete the square by writing $x^2 - \frac{7}{2}x$ in the form $\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$

 $=2\left(x-\frac{7}{4}\right)^2-\frac{49}{8}$

3 Expand and Simplify

Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$$x^{2} + 6x + 4 = 0$$

$$(x + 3)^{2} - 9 + 4 = 0$$

$$(x + 3)^{2} - 5 = 0$$

$$(x + 3)^{2} = 5$$

$$x + 3 = \pm \sqrt{5}$$

$$x = \pm \sqrt{5} - 3$$
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$

- 1 Write $x^2 + bx + c = 0$ in the form $\left(x + \frac{b}{2}\right)^2 \left(\frac{b}{2}\right)^2 + c = 0$
- 2 Simplify.
- 3 Rearrange the equation to work out x. First, add 5 to both sides.
- 4 Square root both sides. Remember that the square root of a value gives two answers.
- 5 Subtract 3 from both sides to solve the equation.
- 6 Write down both solutions.

Practice Questions

Set 1

Solve the following equations:

a.
$$x^2 - 2x - 15 = 0$$

b.
$$x^2 = 9x$$

a.
$$x^2 - 2x - 15 = 0$$
 b. $x^2 = 9x$ **c.** $6x^2 + 13x - 5 = 0$

d.
$$x^2 - 5x + 18 = 2 + 3x$$

Set 2

Solve $3x^2 - 7x - 1 = 0$ by using the formula.

Set 3

Complete the square for the expressions:

a.
$$x^2 + 8x$$

b.
$$x^2 - 3x$$

a.
$$x^2 + 8x$$
 b. $x^2 - 3x$ **c.** $2x^2 - 12x$

Set 4

Solve the equation $x^2 + 8x + 10 = 0$ by completing the square.

Give your answers in surd form.

Video Solutions

Set 1

Set 2

Set 3

Set 4

Additional Practice

Set 1

1 Solve

a
$$6x^2 + 4x = 0$$

$$x^2 + 7x + 10 = 0$$

$$e x^2 - 3x - 4 = 0$$

$$\mathbf{g} \qquad 2x^2 - 7x - 4 = 0$$

b
$$28x^2 - 21x = 0$$

d
$$x^2 - 5x + 6 = 0$$

$$\mathbf{f}$$
 $x^2 + 3x - 10 = 0$

$$\mathbf{h} = 3x^2 - 13x - 10 = 0$$

Set 2

1 Solve, giving your solutions in surd form.

a
$$3x^2 + 6x + 2 = 0$$

b
$$2x^2 - 4x - 7 = 0$$

Solve the equation $x^2 - 7x + 2 = 0$

Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b and c are integers.

3 Solve $10x^2 + 3x + 3 = 5$ Give your solution in surd form.

Set 3

1 Complete the square for the following expressions:

a
$$x^2 + 8x$$

b
$$x^2 - 10x$$

c
$$x^2-x$$

d $3x^2 - 15x$

Set 4

1 Solve by completing the square.

$$x^2 - 4x - 3 = 0$$

b
$$x^2 - 10x + 4 = 0$$

$$x^2 + 8x - 5 = 0$$

d
$$x^2 - 2x - 6 = 0$$

<u>Solutions</u>

Simultaneous Equations

Worked Examples

Solve the simultaneous equations 3x + y = 5 and x + y = 1

$$3x + y = 5$$

$$- x + y = 1$$

$$2x = 4$$
So $x = 2$

Using
$$x + y = 1$$

 $2 + y = 1$
So $y = -1$

Check:

equation 1:
$$3 \times 2 + (-1) = 5$$
 YES
equation 2: $2 + (-1) = 1$ YES

- Subtract the second equation from the first equation to eliminate the y term.
- 2 To find the value of y, substitute x = 2 into one of the original equations.
- 3 Substitute the values of x and y into both equations to check your answers.

Solve x + 2y = 13 and 5x - 2y = 5 simultaneously.

$$x + 2y = 13 + 5x - 2y = 5 \hline 6x = 18 So x = 3$$

Using
$$x + 2y = 13$$

 $3 + 2y = 13$
So $y = 5$

Check:

equation 1:
$$3 + 2 \times 5 = 13$$
 YES
equation 2: $5 \times 3 - 2 \times 5 = 5$ YES

- Add the two equations together to eliminate the y term.
- 2 To find the value of y, substitute x = 3 into one of the original equations.
- 3 Substitute the values of x and y into both equations to check your answers.

$$2x-1=x^2-4$$

$$x^2 - 2x - 3 = 0$$

$$(x+1)(x-3)=0$$

$$x = -1$$
 and $x = 3$

$$x = -1, y = -3$$

$$x = 3, y = 5$$

Check:

Equation 1:
$$-3 = 2(-1)-1$$
 YES

$$5 = 2(3) - 1$$
 YES

Equation 2:
$$-1 = (-1)^2 - 4$$
 YES

$$5 = (3)^2 - 4$$
 YES

- 1 Substitute 2x 1 for y in the linear equation
- 2 Rearrange to obtain a quadratic equation whose RHS is zero
- 3 Factorize
- 4 Find two values for x
- 5 Substitute each of these values in turn into the other equation to find two values for *y*
- 6 Substitute both values for x and y into both equations to check your answers.

Solve simultaneously, y = x + 1 and $y = 1 + \frac{4}{x}$

$$x+1=1+\frac{4}{x}$$

$$x^2 + x = x + 4$$

$$x^2 - 4 = 0$$

$$(x-2)(x+2) = 0$$

$$x = 2$$
 and $x = -2$

$$x = 2, y = 3$$

$$x = -2, y = -1$$

Check:

Equation 1:
$$3 = 2 + 1$$

$$-1 = -2 + 1$$

IES

Equation 2:
$$3=1+(4\div 2)$$
 YES

$$-1=1+(4\div(-2))$$

YES

YES

- 1 Substitute x+1 for y in the linear equation
- 2 Multiply both sides by x
- 3 Rearrange to obtain a quadratic equation whose RHS is zero
- 3 Factorize
- 4 Find two values for x
- 5 Substitute each of these values in turn into the other equation to find two values for y
- **6** Substitute both values for x and y into both equations to check your answers.

Practice Questions

Set 1

Solve the simultaneous equations:

a.
$$2x + 3y = 8$$

 $3x - y = 23$

b.
$$4x - 5y = 4$$

 $6x + 2y = 25$

Set 2

Solve the simultaneous equations:

$$2x + 2y = 3$$
$$x^2 + 3xy = 10$$

Video Solutions

Set 1

Set 2

Additional Practice

Set 1

$$1 4x + y = 8$$
$$x + y = 5$$

$$3x + y = 7 3x + 2y = 5$$

$$3 4x + y = 3 3x - y = 11$$

4
$$3x + 4y = 7$$

 $x - 4y = 5$

5
$$2x + y = 11$$

 $x - 3y = 9$

6
$$2x + 3y = 11$$

 $3x + 2y = 4$

Set 2

Solve these simultaneous equations.

1
$$xy = 9$$
 and $y = x$

2
$$x^2 + y^2 = 50$$
 and $y = x$

3
$$xy - 3 = 16$$
 and $x - 19y = 0$

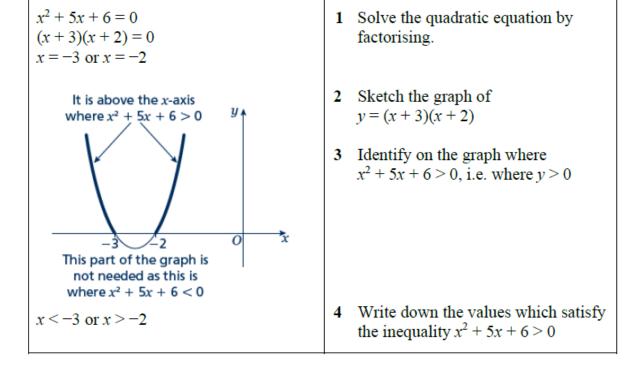
Solutions

Inequalities

Worked Examples

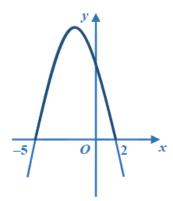
Solve 2x - 5 < 7

	l	Add 5 to both sides. Divide both sides by 2.
x < 6	_	Divide both sides by 2.


Solve $2 - 5x \ge -8$

$ 2-5x \ge -8 $ $ -5x \ge -10 $ $ x \le 2 $	 Subtract 2 from both sides. Divide both sides by -5. Remember to reverse the inequality when dividing by a negative number.
---	---

Solve 4(x-2) > 3(9-x)


$$4(x-2) > 3(9-x)$$
 1 Expand the brackets.
 $4x-8 > 27-3x$ 2 Add $3x$ to both sides.
 $7x-8 > 27$ 3 Add 8 to both sides.
 $7x > 35$ 4 Divide both sides by 7.

Find the set of values of x which satisfy $x^2 + 5x + 6 > 0$

Find the set of values of x which satisfy $-x^2 - 3x + 10 \ge 0$

$$-x^{2} - 3x + 10 = 0$$
$$(-x + 2)(x + 5) = 0$$
$$x = 2 \text{ or } x = -5$$

$$-5 \leqslant x \leqslant 2$$

- 1 Solve the quadratic equation by factorising.
- 2 Sketch the graph of y = (-x + 2)(x + 5) = 0
- 3 Identify on the graph where $-x^2 - 3x + 10 \ge 0$, i.e. where $y \ge 0$
- 3 Write down the values which satisfy the inequality $-x^2 - 3x + 10 \ge 0$

Practice Questions

Set 1

Find the set of values of x for which:

a.
$$5x + 9 > x + 20$$

b.
$$12 - 3x < 27$$

a.
$$5x + 9 \ge x + 20$$
 b. $12 - 3x < 27$ **c.** $3(x - 5) > 5 - 2(x - 8)$

Set 2

Find the set of values of x for which:

$$3 - 5x - 2x^2 < 0$$

Video Solutions

<u>Set 1</u>

Set 2

Additional Practice

Set 1

1 Solve

a
$$2-4x > 18$$

a
$$2-4x \ge 18$$
 b $3 \le 7x + 10 < 45$ **c** $6-2x \ge 4$

c
$$6-2x \ge 4$$

d
$$4x + 17 < 2 - x$$
 e $4 - 5x < -3x$ **f** $-4x \ge 24$

$$4 - 5x < -3x$$

f
$$-4x \ge 24$$

2 Solve these inequalities

a
$$3t+1 < t+6$$

b
$$2(3n-1) \ge n+5$$

Solve 3

a
$$3(2-x) > 2(4-x) + 4$$

b
$$5(4-x) > 3(5-x) + 2$$

Set 2

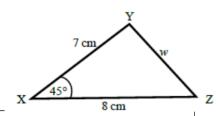
Find the set of values of x for which $(x + 7)(x - 4) \le 0$ 1

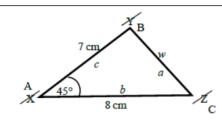
Find the set of values of x for which $x^2 - 4x - 12 \ge 0$ 2

Find the set of values of x for which $2x^2 - 7x + 3 < 0$ 3

Find the set of values of x for which $4x^2 + 4x - 3 > 0$ 4

Find the set of values of x for which $12 + x - x^2 \ge 0$ 5


Solutions

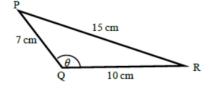

Trigonometry

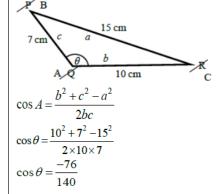
Worked Examples

Work out the length of side w.

Give your answer correct to 3 significant figures.

$$a^2 = b^2 + c^2 - 2bc \cos A$$

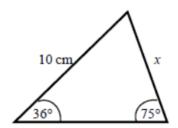

$$w^2 = 8^2 + 7^2 - 2 \times 8 \times 7 \times \cos 45^\circ$$

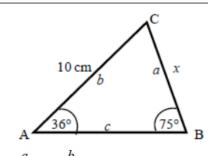

$$w^2 = 33.804\,040\,51...$$
$$w = \sqrt{33.804\,040\,51}$$

w = 5.81 cm

- 1 Always start by labelling the angles and sides.
- 2 Write the cosine rule to find the side
- 3 Substitute the values a, b and A into the formula.
- 4 Use a calculator to find w^2 and then w.
- 5 Round your final answer to 3 significant figures and write the units in your answer.

Work out the size of angle θ . Give your answer correct to 1 decimal place.



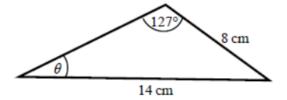

 θ = 122.878 349...

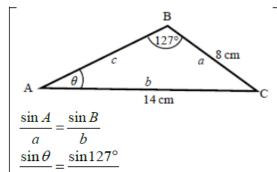
 $\theta = 122.9^{\circ}$

- Always start by labelling the angles and sides.
- Write the cosine rule to find the angle.
- 3 Substitute the values a, b and c into the formula.
- 4 Use cos⁻¹ to find the angle.
- 5 Use your calculator to work out $\cos^{-1}(-76 \div 140)$.
- 6 Round your answer to 1 decimal place and write the units in your answer.

Work out the length of side *x*. Give your answer correct to 3 significant figures.

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
$$\frac{x}{\sin 36^{\circ}} = \frac{10}{\sin 75^{\circ}}$$


$$x = \frac{10 \times \sin 36^{\circ}}{\sin 75^{\circ}}$$


$$x = 6.09 \text{ cm}$$

1 Always start by labelling the angles and sides.

- 2 Write the sine rule to find the side.
- 3 Substitute the values *a*, *b*, *A* and *B* into the formula.
- 4 Rearrange to make x the subject.
- 5 Round your answer to 3 significant figures and write the units in your answer.

Work out the size of angle θ . Give your answer correct to 1 decimal place.

$$8 14$$

$$\sin \theta = \frac{8 \times \sin 127^{\circ}}{14}$$

$$\theta = 27.2^{\circ}$$

1 Always start by labelling the angles and sides.

- 2 Write the sine rule to find the angle.
- 3 Substitute the values *a*, *b*, *A* and *B* into the formula.
- 4 Rearrange to make $\sin \theta$ the subject.
- 5 Use sin⁻¹ to find the angle. Round your answer to 1 decimal place and write the units in your answer.

Practice Questions

Set 1

Calculate the length of the side AB of the triangle ABC in which AC = 6.5 cm, BC = 8.7 cm and $\angle ACB = 100^{\circ}$.

Set 2

Find the size of the smallest angle in a triangle whose sides have lengths 3 cm, 5 cm and 6 cm.

Set 3

```
In \triangle ABC, AB = 8 cm, \angle BAC = 30^{\circ} and \angle BCA = 40^{\circ}. Find BC.
```

Set 4

```
In \triangle ABC, AB = 3.8 cm, BC = 5.2 cm and \angle BAC = 35^{\circ}. Find \angle ABC.
```

Set 5

- **a.** Sketch the graph of $y = \cos \theta$ in the interval $-360^{\circ} \le \theta \le 360^{\circ}$.
- **b.** i. Sketch the graph of $y = \sin x$ in the interval $-180^{\circ} \le x \le 270^{\circ}$
 - ii. $\sin(-30^\circ) = -0.5$. Use your graph to determine two further values of x for which $\sin x = -0.5$.

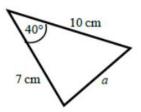
Video Solutions

Set 1

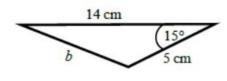
Set 2

Set 3

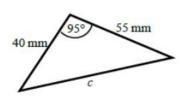
Set 4

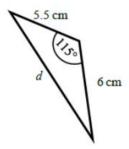

Set 5

Additional Practice

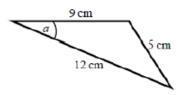

Set 1

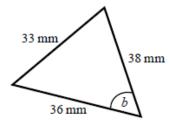
1 Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.


a

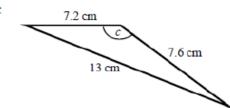

b

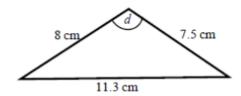
C


d

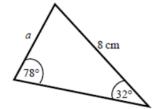

Set 2

1 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.


a

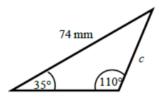

b

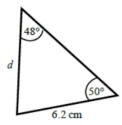
c


d

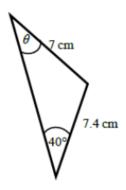
Set 3

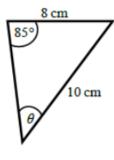
Find the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.


a

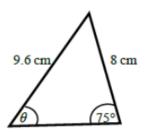

b

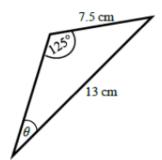
c


d

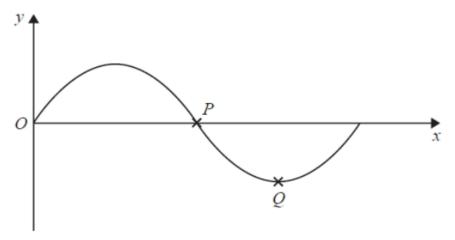

Set 4

Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.


9


b

c



d

Set 5

1 The diagram shows part of a sketch of the curve $y = \sin x^{\circ}$

- (a) Write down the coordinates of
 - (i) the point P

,			
ľ	•••••	,	 J

(ii) the point Q

1		١
•	 ,	 ,

(b) Sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$ Show the coordinates of any points of intersection with the coordinate axes.

Solutions

Solutions

<u>Indices</u>

Additional Practice

Set 1

- **1.** (a) a^9
- 2. (a) x^{10}
- (b) $9e^{5}f^{6}$
- (b) m^{12}

(c) 3

(c) $3a^{-4}f^6$

Set 2

1 a $\frac{3x^3}{2}$

b $5x^2$

c 3*x*

d $\frac{y}{2x^2}$

 $\mathbf{e} \quad y^{\frac{1}{2}}$

f c⁻³

g $2x^6$

h *x*

Set 3

1 a 7

b 4

2 a 125

b 32

3 a $\frac{1}{25}$

b $\frac{1}{64}$

4 a $\frac{1}{2}$

b $\frac{1}{9}$

<u>Surds</u>

Additional Practice

Set 1

1	_	2 E
1	a	3√5

2 a
$$15\sqrt{2}$$

c 3√2

b 5√5

b √5

d
$$\sqrt{3}$$

f 5√3

Set 2

c $10\sqrt{5}-7$

b
$$9-\sqrt{3}$$

b $9-\sqrt{3}$ **d** $26-4\sqrt{2}$

$$\mathbf{2}$$
 $x-y$

3 18

4 1 + 2
$$\sqrt{2}$$

Set 3

1 a
$$\frac{\sqrt{5}}{5}$$

c
$$\frac{2\sqrt{7}}{7}$$
 e $\sqrt{2}$

e
$$\sqrt{2}$$

2 a
$$\frac{3+\sqrt{5}}{4}$$

3 a
$$3+2\sqrt{2}$$

b
$$\frac{\sqrt{11}}{11}$$

d
$$\frac{\sqrt{2}}{2}$$

b
$$\frac{2(4-\sqrt{3})}{13}$$

 $c = \frac{6(5+\sqrt{2})}{23}$

$$\mathbf{b} \qquad \frac{\sqrt{x} + \sqrt{y}}{x - y}$$

Straight Lines

Additional Practice

Set 1

1 **a** m = 2

b $m = -\frac{1}{2}$

c m = 5

d m = -3

Set 2

1 a x + 2y + 14 = 0 **b** 2x - y = 0

c 2x - 3y + 12 = 0 **d** 6x + 5y + 10 = 0

2 y = 4x - 3

3 $y = -\frac{2}{3}x + 7$

Set 3

1 a y = 2x - 3 **b** $y = -\frac{1}{2}x + 6$

c y = 5x - 2 **d** y = -3x + 19

Set 4

1 **a** y = 3x - 7 **b** y = -2x + 5 **c** $y = -\frac{1}{2}x$ **d** $y = \frac{3}{2}x + 8$

Algebraic Methods

Additional Practice

Set 1

1 **a**
$$\frac{2(x+2)}{x-1}$$

$$c \frac{x+2}{x}$$

e
$$\frac{x+3}{x}$$

2 a
$$\frac{3x+4}{x+7}$$

$$\mathbf{b} = \frac{x}{x-1}$$

d
$$\frac{x}{x+5}$$

$$f = \frac{x}{x-5}$$

b
$$\frac{2x+3}{3x-2}$$

Quadratic Equations

Additional Practice

Set 1

1 **a** x = 0 or $x = -\frac{2}{3}$

c x = -5 or x = -2

e x = -1 or x = 4 **g** $x = -\frac{1}{2}$ or x = 4

b $x = 0 \text{ or } x = \frac{3}{4}$

d x = 2 or x = 3

f x = -5 or x = 2 **h** $x = -\frac{2}{3} \text{ or } x = 5$

Set 2

1 **a** $x = -1 + \frac{\sqrt{3}}{3}$ or $x = -1 - \frac{\sqrt{3}}{3}$ **b** $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$

2 $x = \frac{7 + \sqrt{41}}{2}$ or $x = \frac{7 - \sqrt{41}}{2}$

3 $x = \frac{-3 + \sqrt{89}}{20}$ or $x = \frac{-3 - \sqrt{89}}{20}$

Set 3

1

a $(x+4)^2-16$

b $(x-5)^2-25$ **c** $\left(x-\frac{1}{2}\right)^2-\frac{1}{4}$

d $3\left(x-\frac{5}{2}\right)^2-\frac{75}{4}$

 $e - 2(x-3)^2 + 18$

Set 4

1 **a** $x = 2 + \sqrt{7}$ or $x = 2 - \sqrt{7}$ **b** $x = 5 + \sqrt{21}$ or $x = 5 - \sqrt{21}$

c $x = -4 + \sqrt{21}$ or $x = -4 - \sqrt{21}$ d $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$

Simultaneous Equations

Additional Practice

Set 1

1
$$x = 1, y = 4$$

1
$$x = 1, y = 4$$
 4 $x = 3, y = -\frac{1}{2}$

2
$$x = 3, y = -2$$
 5 $x = 6, y = -1$

5
$$x = 6, y = -1$$

3
$$x = 2, y = -5$$
 6 $x = -2, y = 5$

6
$$x = -2, y = 3$$

Set 2

1
$$x = -3$$
, $y = -3$ and $x = 3$, $y = 3$

and
$$x=3, y=3$$

2
$$x = -5$$
, $y = -5$ and $x = 5$, $y = 5$

and
$$x = 5$$
, $y = 3$

3
$$x = -19, y = -1$$
 and $x = 19, y = 1$

$$x = 19, y = 1$$

Inequalities

Additional Practice

Set 1

1 a
$$x \le -4$$

d x < -3

b
$$-1 \le x < 5$$

e $x > 2$

c
$$x \le 1$$

 $\begin{array}{ll} \mathbf{c} & x \leq 1 \\ \mathbf{f} & x \leq -6 \end{array}$

2 a
$$t < \frac{5}{2}$$

b $n \geq \frac{7}{5}$

3

a
$$x < -6$$

b $x < \frac{3}{2}$

Set 2

1
$$-7 \leqslant x \leqslant 4$$

2
$$x \le -2 \text{ or } x \ge 6$$

$$\frac{1}{2} < x < 3$$

4
$$x < -\frac{3}{2}$$
 or $x > \frac{1}{2}$

5
$$-3 ≤ x ≤ 4$$

Trigonometry

Additional Practice

Set 1

1 a 6.46 cm **b** 9.26 cm **c** 70.8 mm **d** 9.70 cm

Set 2

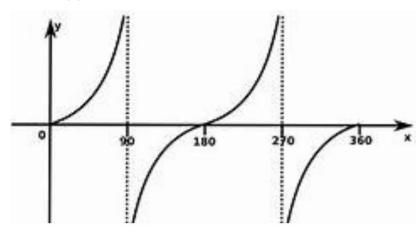
1 a 22.2° **b** 52.9°

c 122.9° d 93.6°

Set 3

1 a 4.33 cm **b** 15.0 cm **c** 45.2 mm **d** 6.39 cm

Set 4


1 a 42.8° **b** 52.8° **c** 53.6° **d** 28.2°

Set 5

1 (a)(i) (180, 0)

(ii) (270, -1)

(b)

