TRANSITION PACK

MEASURING AMOUNT OF SUBSTANCE

MEASUREMENTS IN CHEMISTRY

Mass

Convert the following into grams:

- a. 0.25 kg
- b. 15 kg
- c. 100 tonnes
- d. 2 tonnes

Volume

Convert the following into dm₃:

- a. 100 cm³
- b. 25 cm³
- c. 50 m³
- d. 50000 cm³

Tip – always use standard form for very large and very small numbers!

What is a mole?

Atoms and molecules are very small – far too small to count individually!

It is important to know how much of something we have, but we count particles in MOLES because you get simpler numbers

$1 \text{ mole} = 6.02 \text{ x} 10^{23} \text{ particles}$

(6.2 10²³ is known as Avogadro's number)

a. If you have 2.5 x 10^{2} atoms of magnesium, how many moles do you have?

b. If you have 0.25 moles of carbon dioxide, how many molecules do you have?

How can you work out how many moles you have?

3

a. From a measurement of **MASS**:

You can find the number of moles of a substance if you are given its **mass** and you know its **molar mass**:

number of moles = mass/molar mass

n = m/M

Mass MUST be measured in grams!

Molar mass has units of gmol.

To calculate the **molar mass** of CO_2 add together the masses of each element e.g.

Oxygen = mass of 16 g mol

Carbon = mass of 12 g mol

1. Calculate the number of moles present in:	2. Calculate the mass of:	3. Calculate the molar mass of the following substances:
a) 2.3 g of Na	a) 0.05 moles of Cl ₂	a) 0.015 moles, 0.42 g
b) 2.5 g of O ₂	b) 0.125 moles of KBr	b) 0.0125 moles, 0.50 g
c) 240 kg of CO	c) 0.075 moles of Ca(OH) ₂	c) 0.55 moles, 88 g
d) 12.5 g of Al(OH),	d) 250 moles of Fe ₂ O ₃	d) 2.25 moles, 63 g
e) 5.2 g of PbO ₂	e) 0.02 moles of Al ₂ (SO ₄) ₃	e) 0.00125 moles, 0.312 g

3

b. From a measurement of AQUEOUS VOLUME:

You can find the number of moles of a substance dissolved in water (aqueous) if you are given the **volume** of solution and you know its **molar concentration**:

Aqueous volume MUST be measured in dm³!

concentration has units of moldm³

If you know the molar mass of the substance, you can convert the molar concentration into a mass concentration:

Molar concentration (moldm ₃)	X	m,	=	mass concentration
(gdm [.])				

1. Calculate the number of moles of substance present in each of the following solutions:	2. Calculate the molar concentration and the mass concentration of the following solutions:	3. Calculate the molar concentration and the mass concentration of the following solutions:
a) 25 cm ³ of 0.1 moldm ³ HCl	a) 0.05 moles of HCl in 20 cm ³	a) 35 g of NaCl in 100 cm ³
b) 40 cm ³ of 0.2 moldm ³ HNO ₃	b) 0.01 moles of NaOH in 25 cm ³	b) 20 g of CuSO, in 200 cm ³
c) 10 cm ³ of 1.5 moldm ³ NaCl	c) 0.002 moles of H ₂ SO ₄ in 16.5 cm ³	c) 5 g of HCl in 50 cm ³
d) 5 cm ³ of 0.5 moldm ³ AgNO ₃	d) 0.02 moles of CuSO ₄ in 200 cm ³	d) 8 g of NaOH in 250 cm ³
e) 50 cm ³ of 0.1 moldm ³ H ₂ SO ₄	e) 0.1 moles of NH, in 50 cm,	e) 2.5 g of NH, in 50 cm,

c. From a measurement of GASEOUS VOLUME:

You can find the number of moles of a gas if you are given the **volume** of the gas:

number of mol	es =	volume	/	24
n	=	V	1	24

24 $dm^{\mbox{\tiny 9}}$ is the volume occupied by 1 mole of any gas at room temperature and pressure

Volume MUST be measured in dm[,]!

1. Calculate the number of moles present in:	2. Calculate the volume of gas occupied by:	3. Calculate the mass of the following gas samples:
a) 48 dm ³ of O ₂	a) 0.05 moles of Cl ₂	a) 48 dm ³ of O ₂
b) 1.2 dm ³ of CO ₂	b) 0.25 moles of CO ₂	b) 1.2 dm ³ of CO ₂
c) 200 cm ³ of N ₂	c) 28 g of N ₂	c) 200 cm ³ of N ₂
d) 100 dm ³ of Cl ₂	d) 3.2 g of O ₂	d) 100 dm ³ of Cl ₂
e) 60 cm ³ of NO ₂	e) 20 g of NO ₂	e) 60 cm ³ of NO ₂