TRANSITION PACK

MEASURING AMOUNT OF SUBSTANCE

MASS

MEASUREMENTS IN CHEMISTRY

Mass

Convert the following into grams:
a. $\quad 0.25 \mathrm{~kg}$
b. $\quad 15 \mathrm{~kg}$
c. $\quad 100$ tonnes
d. 2 tonnes

Volume

Convert the following into dm:
a. $\quad 100 \mathrm{~cm}$
b. $\quad 25 \mathrm{~cm}^{\text {b }}$
c. $\quad 50 \mathrm{~m}$
d. $\quad 50000 \mathrm{~cm}^{3}$

Tip - always use standard form for very large and very small numbers!
What is a mole?
Atoms and molecules are very small - far too small to count individually!
It is important to know how much of something we have, but we count particles in MOLES because you get simpler numbers

1 mole $=6.02 \times 10^{23}$ particles
(6.2 10^{33} is known as Avogadro's number)
a. If you have 2.5×10^{3} atoms of magnesium, how many moles do you have?
b. If you have 0.25 moles of carbon dioxide, how many molecules do you have?

How can you work out how many moles you have?

a. From a measurement of MASS:

You can find the number of moles of a substance if you are given its mass and you know its molar mass:

number of moles = mass/molar mass

$$
\mathbf{n} \quad=\quad \mathbf{m} / \mathbf{M}
$$

Mass MUST be measured in grams!

Molar mass has units of gmol ${ }^{-1}$

To calculate the molar mass of CO_{2} add together the masses of each element e.g.

Oxygen = mass of 16 g mol
Carbon $=$ mass of 12 g mol

$$
\begin{array}{llll}
16 & x & 2 & =32 \\
12 & x & 1 & =12
\end{array}
$$

1. Calculate the number of moles present in:	2. Calculate the mass of:	3. Calculate the molar mass of the following substances:
a) 2.3 g of Na	a) 0.05 moles of Cl_{2}	a) 0.015 moles, 0.42 g
b) $2.5 \mathrm{~g} \mathrm{of} \mathrm{O}_{2}$	b) 0.125 moles of KBr	b) 0.0125 moles, 0.50 g
c) 240 kg of CO		
2	c) 0.075 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$	c) 0.55 moles, 88 g
d) $12.5 \mathrm{~g} \mathrm{of} \mathrm{Al}(\mathrm{OH})_{3}$	d) 250 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$	d) 2.25 moles, 63 g
e) 5.2 g of PbO	e) $0_{2} .02$ moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	e) 0.00125 moles, 0.312 g

b. From a measurement of AQUEOUS VOLUME:

You can find the number of moles of a substance dissolved in water (aqueous) if you are given the volume of solution and you know its molar concentration:

number of moles $=$ aqueous volume \mathbf{x} molar concentration

Aqueous volume MUST be measured in dm! concentration has units of moldm ${ }^{3}$

If you know the molar mass of the substance, you can convert the molar concentration into a mass concentration:

```
Molar concentration (moldm*) x m. = mass concentration
(gdm*)
```

1. Calculate the number of moles of substance present in each of the following solutions:	2. Calculate the molar concentration and the mass concentration of the following solutions:	3. Calculate the molar concentration and the mass concentration of the following solutions:
a) 25 cm of 0.1 moldm HCl	a) 0.05 moles of HCl in $20 \mathrm{~cm}^{3}$	a) 35 g of NaCl in 100 cm
b) $40 \mathrm{~cm}^{3}$ of 0.2 moldm HNO_{3}	b) 0.01 moles of NaOH in 25 cm	b) 20 g of CuSO_{4} in 200 cm
c) 10 cm of 1.5 moldm NaCl	c) 0.002 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 16.5 cm	c) 5 g of HCl in 50 cm
d) 5 cm of 0.5 moldm AgNO	d) 0.02 moles of CuSO_{4} in 200 cm	d) 8 g of NaOH in 250 cm
e) 50 cm of 0.1 moldm $\mathrm{H}_{2} \mathrm{SO}_{4}$	e) 0.1 moles of NH_{3} in 50 cm	e) $2.5 \mathrm{~g} \mathrm{of} \mathrm{NH}_{3}$ in 50 cm

c. From a measurement of GASEOUS VOLUME:

You can find the number of moles of a gas if you are given the volume of the gas:

number of moles	$=$	volume	$/$	24
n	$=$	v	$/$	24

$24 \mathbf{~ d m}^{3}$ is the volume occupied by 1 mole of any gas at room temperature and pressure

Volume MUST be measured in dm!

1. Calculate the number of moles present in:	2. Calculate the volume of gas occupied by:	3. Calculate the mass of the following gas samples:
a) 48 dm of O_{2}	a) 0.05 moles of Cl_{2}	a) 48 dm of O_{2}
b) 1.2 dm of CO_{2}	b) 0.25 moles of CO_{2}	b) 1.2 dm of CO_{2}
c) 200 cm of N_{2}	c) 28 g of N_{2}	c) 200 cm of N_{2}
d) 100 dm of Cl_{2}	d) 3.2 g of O_{2}	d) 100 dm of Cl_{2}
e) 60 cm 3 of NO_{2}	e) 20 g of NO_{2}	e) 60 cm 3 of NO_{2}

